This page was generated from doc/tutorials/spacetime.nblink.

[1]:
# Spacetime algebra. [1, -1, -1, -1] signature

# Make SymPy available to this program:
import sympy
from sympy import *

# Make GAlgebra available to this program:
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
    # Fmt:       sets the way that a multivector's basis expansion is output.
    # GaPrinter: makes GA output a little more readable.
    # Format:    turns on latex printer.
from galgebra.gprinter import gFormat, gprint
gFormat()
$\displaystyle \DeclareMathOperator{\Tr}{Tr}$$ $$\DeclareMathOperator{\Adj}{Adj}$$ $$\newcommand{\bfrac}[2]{\displaystyle\frac{#1}{#2}}$$ $$\newcommand{\lp}{\left (}$$ $$\newcommand{\rp}{\right )}$$ $$\newcommand{\paren}[1]{\lp {#1} \rp}$$ $$\newcommand{\half}{\frac{1}{2}}$$ $$\newcommand{\llt}{\left <}$$ $$\newcommand{\rgt}{\right >}$$ $$\newcommand{\abs}[1]{\left |{#1}\right | }$$ $$\newcommand{\pdiff}[2]{\bfrac{\partial {#1}}{\partial {#2}}}$$ $$\newcommand{\npdiff}[3]{\bfrac{\partial^{#3} {#1}}{\partial {#2}^{#3}}}$$ $$\newcommand{\lbrc}{\left \{}$$ $$\newcommand{\rbrc}{\right \}}$$ $$\newcommand{\W}{\wedge}$$ $$\newcommand{\prm}[1]{{#1}^{\prime}}$$ $$\newcommand{\ddt}[1]{\bfrac{d{#1}}{dt}}$$ $$\newcommand{\R}{\dagger}$$ $$\newcommand{\deriv}[3]{\bfrac{d^{#3}#1}{d{#2}^{#3}}}$$ $$\newcommand{\grade}[2]{\left < {#1} \right >_{#2}}$$ $$\newcommand{\f}[2]{{#1}\lp {#2} \rp}$$ $$\newcommand{\eval}[2]{\left . {#1} \right |_{#2}}$$ $$\newcommand{\bs}[1]{\boldsymbol{#1}}$$ $$\newcommand{\grad}{\bs{\nabla}}$
[2]:
txyz = (t, x, y, z) = symbols('t x y z', real=True)
stcoords = (t,x,y,z) = symbols('t x y z')
st = Ga('\mathbf{e}', g=[1, -1, -1, -1], coords=stcoords)
(et, ex, ey, ez) = st.mv()
[3]:
st.mv('X', 'vector')
[3]:
$\displaystyle X = X^{t} \mathbf{\mathbf{e}_t} + X^{x} \mathbf{\mathbf{e}_x} + X^{y} \mathbf{\mathbf{e}_y} + X^{z} \mathbf{\mathbf{e}_z}$
[ ]: