This page was generated from doc/tutorials/sp3.nblink.
[1]:
# sp3: Spherical Coordinates in R^3
# Make SymPy available to this program:
import sympy
from sympy import *
# Make GAlgebra available to this program:
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
# Fmt: sets the way that a multivector's basis expansion is output.
# GaPrinter: makes GA output a little more readable.
# Format: turns on latex printer.
from galgebra.gprinter import gFormat, gprint
gFormat()
$\displaystyle \DeclareMathOperator{\Tr}{Tr}$$
$$\DeclareMathOperator{\Adj}{Adj}$$
$$\newcommand{\bfrac}[2]{\displaystyle\frac{#1}{#2}}$$
$$\newcommand{\lp}{\left (}$$
$$\newcommand{\rp}{\right )}$$
$$\newcommand{\paren}[1]{\lp {#1} \rp}$$
$$\newcommand{\half}{\frac{1}{2}}$$
$$\newcommand{\llt}{\left <}$$
$$\newcommand{\rgt}{\right >}$$
$$\newcommand{\abs}[1]{\left |{#1}\right | }$$
$$\newcommand{\pdiff}[2]{\bfrac{\partial {#1}}{\partial {#2}}}$$
$$\newcommand{\npdiff}[3]{\bfrac{\partial^{#3} {#1}}{\partial {#2}^{#3}}}$$
$$\newcommand{\lbrc}{\left \{}$$
$$\newcommand{\rbrc}{\right \}}$$
$$\newcommand{\W}{\wedge}$$
$$\newcommand{\prm}[1]{{#1}^{\prime}}$$
$$\newcommand{\ddt}[1]{\bfrac{d{#1}}{dt}}$$
$$\newcommand{\R}{\dagger}$$
$$\newcommand{\deriv}[3]{\bfrac{d^{#3}#1}{d{#2}^{#3}}}$$
$$\newcommand{\grade}[2]{\left < {#1} \right >_{#2}}$$
$$\newcommand{\f}[2]{{#1}\lp {#2} \rp}$$
$$\newcommand{\eval}[2]{\left . {#1} \right |_{#2}}$$
$$\newcommand{\bs}[1]{\boldsymbol{#1}}$$
$$\newcommand{\grad}{\bs{\nabla}}$
[2]:
# sp3: Geometric algebra for R^3 using spherical coordinates
# Mathematics convention: r, phi (colatitude), theta (longitude), in right handed order.
sp3coords = (r, phi, theta) = symbols('r phi theta')
sp3 = Ga('e', g=None, coords=sp3coords, \
X=[r*sin(phi)*cos(theta), r*sin(phi)*sin(theta),r*cos(phi)], norm=True)
# g = None. Instead, the spherical coordinate parameterization X is used.
# "\" is Python's line continuation character
(er, ephi, etheta) = sp3.mv()
grad = sp3.grad
from galgebra.dop import *
pdr = Pdop(r)
pdphi = Pdop(phi)
pdtheta = Pdop(theta)
[3]:
sp3.grad
[3]:
$\displaystyle \mathbf{e}_{r} \frac{\partial}{\partial r} + \mathbf{e}_{\phi} \frac{1}{r} \frac{\partial}{\partial \phi} + \mathbf{e}_{\theta} \frac{1}{r \sin{\left(\phi \right)}} \frac{\partial}{\partial \theta}$
[ ]: