This page was generated from doc/tutorials/sp2g3.nblink.
[1]:
# Unit sphere R^3 as a submanifold of g3 in cartesian coordinates
# Make SymPy available to this program:
import sympy
from sympy import *
# Make GAlgebra available to this program:
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
# Fmt: sets the way that a multivector's basis expansion is output.
# GaPrinter: makes GA output a little more readable.
# Format: turns on latex printer.
from galgebra.gprinter import gFormat, gprint
gFormat()
$\displaystyle \DeclareMathOperator{\Tr}{Tr}$$
$$\DeclareMathOperator{\Adj}{Adj}$$
$$\newcommand{\bfrac}[2]{\displaystyle\frac{#1}{#2}}$$
$$\newcommand{\lp}{\left (}$$
$$\newcommand{\rp}{\right )}$$
$$\newcommand{\paren}[1]{\lp {#1} \rp}$$
$$\newcommand{\half}{\frac{1}{2}}$$
$$\newcommand{\llt}{\left <}$$
$$\newcommand{\rgt}{\right >}$$
$$\newcommand{\abs}[1]{\left |{#1}\right | }$$
$$\newcommand{\pdiff}[2]{\bfrac{\partial {#1}}{\partial {#2}}}$$
$$\newcommand{\npdiff}[3]{\bfrac{\partial^{#3} {#1}}{\partial {#2}^{#3}}}$$
$$\newcommand{\lbrc}{\left \{}$$
$$\newcommand{\rbrc}{\right \}}$$
$$\newcommand{\W}{\wedge}$$
$$\newcommand{\prm}[1]{{#1}^{\prime}}$$
$$\newcommand{\ddt}[1]{\bfrac{d{#1}}{dt}}$$
$$\newcommand{\R}{\dagger}$$
$$\newcommand{\deriv}[3]{\bfrac{d^{#3}#1}{d{#2}^{#3}}}$$
$$\newcommand{\grade}[2]{\left < {#1} \right >_{#2}}$$
$$\newcommand{\f}[2]{{#1}\lp {#2} \rp}$$
$$\newcommand{\eval}[2]{\left . {#1} \right |_{#2}}$$
$$\newcommand{\bs}[1]{\boldsymbol{#1}}$$
$$\newcommand{\grad}{\bs{\nabla}}$
[2]:
# Unit sphere R^3 as a submanifold of g3 in cartesian coordinates
# g3: Base manifold.
g3coords = (x,y,z) = symbols('x y z', real=True)
g3 = Ga('\mathbf{e}', g=[1,1,1], coords=g3coords)
(ex, ey, ez) = g3.mv()
# sp2: Submanifold
sp2coords = (phi,th) = symbols('phi theta', real=True)
# Parameterize unit sphere using the coordinates of g3:
sp2param = [sin(phi)*cos(th), sin(phi)*sin(th), cos(phi)]
# Map the g3 coordinates of the sphere to its sp2 coordinates:
sp2 = g3.sm(sp2param, sp2coords, norm=True) # "sm" is submanifold
(ephi, eth) = sp2.mv()
(rphi, rth) = sp2.mvr()
# Derivatives
grad = sp2.grad
from galgebra.dop import *
pdphi = Pdop(phi)
pdth = Pdop(th)
[3]:
grad = sp2.grad
grad
[3]:
$\displaystyle \mathbf{e}_{\phi} \frac{\partial}{\partial \phi} + \mathbf{e}_{\theta} \frac{1}{\sin{\left(\phi \right)}} \frac{\partial}{\partial \theta}$
[ ]: