This page was generated from doc/tutorials/g2.nblink.
[1]:
# G2: Standard 2D Model
# Make SymPy available to this program:
import sympy
from sympy import *
# Make GAlgebra available to this program:
from galgebra.ga import *
from galgebra.mv import *
from galgebra.printer import Fmt, GaPrinter, Format
# Fmt: sets the way that a multivector's basis expansion is output.
# GaPrinter: makes GA output a little more readable.
# Format: turns on latex printer.
from galgebra.gprinter import gFormat, gprint
gFormat()
$\displaystyle \DeclareMathOperator{\Tr}{Tr}$$
$$\DeclareMathOperator{\Adj}{Adj}$$
$$\newcommand{\bfrac}[2]{\displaystyle\frac{#1}{#2}}$$
$$\newcommand{\lp}{\left (}$$
$$\newcommand{\rp}{\right )}$$
$$\newcommand{\paren}[1]{\lp {#1} \rp}$$
$$\newcommand{\half}{\frac{1}{2}}$$
$$\newcommand{\llt}{\left <}$$
$$\newcommand{\rgt}{\right >}$$
$$\newcommand{\abs}[1]{\left |{#1}\right | }$$
$$\newcommand{\pdiff}[2]{\bfrac{\partial {#1}}{\partial {#2}}}$$
$$\newcommand{\npdiff}[3]{\bfrac{\partial^{#3} {#1}}{\partial {#2}^{#3}}}$$
$$\newcommand{\lbrc}{\left \{}$$
$$\newcommand{\rbrc}{\right \}}$$
$$\newcommand{\W}{\wedge}$$
$$\newcommand{\prm}[1]{{#1}^{\prime}}$$
$$\newcommand{\ddt}[1]{\bfrac{d{#1}}{dt}}$$
$$\newcommand{\R}{\dagger}$$
$$\newcommand{\deriv}[3]{\bfrac{d^{#3}#1}{d{#2}^{#3}}}$$
$$\newcommand{\grade}[2]{\left < {#1} \right >_{#2}}$$
$$\newcommand{\f}[2]{{#1}\lp {#2} \rp}$$
$$\newcommand{\eval}[2]{\left . {#1} \right |_{#2}}$$
$$\newcommand{\bs}[1]{\boldsymbol{#1}}$$
$$\newcommand{\grad}{\bs{\nabla}}$
[2]:
# g2: The geometric algebra G^2.
g2coords = (x,y) = symbols('x y', real=True)
g2 = Ga('e', g=[1,1,1], coords=g2coords)
(ex, ey) = g2.mv()
grad = g2.grad
from galgebra.dop import *
pdx = Pdop(x)
pdy = Pdop(y)
[ ]: